Basic statistics for clinicians: 2. Interpreting study results: confidence intervals

Format: Texts
Language/s: English
Resource Link: View the Text (PDF)
Short Description:

Interpreting study results: confidence intervals.

Key Concepts addressed:


In the second of four articles, the authors discuss the “estimation” approach to interpreting study results. Whereas, in hypothesis testing, study results lead the reader to reject or accept a null hypothesis, in estimation the reader can assess whether a result is strong or weak, definitive or not. A confidence interval, based on the observed result and the size of the sample, is calculated. It provides a range of probabilities within which the true probability would lie 95% or 90% of the time, depending on the precision desired. It also provides a way of determining whether the sample is large enough to make the trial definitive. If the lower boundary of a confidence interval is above the threshold considered clinically significant, then the trial is positive and definitive; if the lower boundary is somewhat below the threshold, the trial is positive, but studies with larger samples are needed. Similarly, if the upper boundary of a confidence interval is below the threshold considered significant, the trial is negative and definitive. However, a negative result with a confidence interval that crosses the threshold means that trials with larger samples are needed to make a definitive determination of clinical importance.

Read more…